ANALOG DEVICES

8.7MHz, $15nV/\sqrt{Hz}$, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers

Preliminary Technical Data

ADA4500-2

FEATURES

PSRR: 100dB minimum CMRR: 100 dB minimum Supply current: 1.6 mA/amp max Wide Bandwidth: 8.7 MHz 2.7 V to 5.5 V single-supply operation Rail-to-rail input and output Low noise 1.1 µV p-p from 0.1 Hz to 10 Hz 15nV/√Hz @ 1kHz 150 µV offset voltage maximum Very low input bias current: 10 pA maximum

APPLICATIONS

Pressure and position sensors Remote security Medical monitors Process control Hazard detectors Photo Diode applications

GENERAL DESCRIPTION

The ADA4500 is a dual 8.7MHz, 15 nV/ \sqrt{Hz} , low power amplifier featuring rail-to-rail input and output swings while operating from a 2.7 V to 5.5 V single power supply.

Employing a novel circuit technology, these amplifiers offer zero input crossover distortion (high linearity and excellent PSRR and CMRR performance), precision, wide bandwidth and very low bias current. This technology offer the excellent CMRR over the supply range without the cross-over distortion seen with the traditional complementary input stage.

This combination of these features makes the ADA4500 amplifier an ideal choice for precision sensor applications as it minimizes errors due to power supply voltage variations over the supply voltage and maintains high CMRR even for a rail-to-rail input op amp. This results in excellent performance for driving Analog-to-Digital (A/D) converters without degradation of performance. The input common mode range includes both the negative and positive supplies.

Sensors, handheld instrumentation, precision signal conditioning, and patient monitors can benefit from the features of the ADA4500.

The ADA4500 is specified for the extended industrial temperature range $(-40^{\circ}\text{C to } +125^{\circ}\text{C})$. ADA4500-2 dual amplifiers are available in the standard 8-lead MSOP and LFCSP.

PIN CONFIGURATIONS

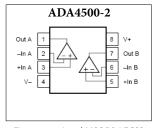


Figure 1.8-Lead MSOP& LFCSP (RM & CP Suffix)

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS; Vs = 2.7V

 V_{S} = 2.7 V, V_{CM} = Vs/2, T_{A} = 25°C, R_{L} = 10k $\Omega,$ C_{L} = 30 pF, unless otherwise specified.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0 V < V_{CM} < 2.7 V$			150	μV
Input Bias Current	IB			1	10	pA
		-40°C < T _A < +125°C			600	pA
Input Offset Current	los			0.5	1	рA
		-40°C < T _A < +125°C			100	pА
Input Voltage Range		−40°C < T _A < +125°C	(V-) -0.3		(V+) + 0.3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = V$ - to V+	100	110		dB
		-40°C < T _A < +125°C	100			dB
Large Signal Voltage Gain	A _{VO}	$(V-) + 0.05 < V_{OUT} < (V+) - 0.05$	110	130		dB
		-40°C < T _A < +125°C	105			dB
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	$-40^{\circ}C < T_A < +125^{\circ}C$		0.2	5	μV/°C
Input Capacitance						
Common-Mode Input Capacitance				3		рF
Differential Input Capacitance				2		pF
Input Impedance				TBD		MΩ
OUTPUT CHARACTERISTICS						
Output Voltage High	Voh	$R_L = 10 \text{ k}\Omega \text{ to GND}$	2.95	2.97		V
1 5 5		$R_L = 2 k\Omega$ to GND	2.90	2.95		V
Output Voltage Low	Vol	$R_L = 10 \text{ k}\Omega \text{ to } V_S$		10	50	mV
		$R_L = 2 k\Omega \text{ to } V_S$		25	100	mV
Short Circuit Limit	lsc			+20/-40		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.7 V$ to 5.5 V	100	110		dB
		-40°C to +125°C	100			dB
Supply Current/Amplifier	I _{SY}	$V_{0} = V_{s} / 2$		1.35	1.6	mA
		-40°C < T _A < +125°C			1.9	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR			4.7		V/µs
Gain Bandwidth Product	GBP			8.6		MHz
Phase Margin	ΦM			55		Degrees
NOISE PERFORMANCE						
Total Harmonic Distortion + Noise	THD+N	$V_s = 2.7 V, G = +1,$		0.002		%
		f = 20Hz to $20kHz$, -
Peak-to-Peak Noise	en p-p	f = 0.1 to 10 Hz		1.1		μV p-p
Voltage Noise Density	en	f = 1 kHz		15		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.5		fA/√Hz
,						

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ELECTRICAL CHARACTERISTICS; $V_s = 5V$

 V_{S} = 5 V, V_{CM} = Vs/2, T_{A} = 25°C, R_{L} = 10k Ω , C_{L} = 30 pF, unless otherwise specified.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						1
Offset Voltage	Vos	$0 V < V_{CM} < 5 V$			150	μV
Input Bias Current	IB			1	10	pА
		$-40^{\circ}C < T_A < +125^{\circ}C$			600	pА
Input Offset Current	los			0.5	1	pА
		$-40^{\circ}C < T_A < +125^{\circ}C$			100	рΑ
Input Voltage Range		$-40^{\circ}C < T_A < +125^{\circ}C$	(V-) -0.3		(V+) + 0.3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = V$ - to V+	100	110		dB
		$-40^{\circ}C < T_A < +125^{\circ}C$	100			dB
Large Signal Voltage Gain	Avo	$(V-) + 0.05 < V_{OUT} < (V+) - 0.05$	110	130		dB
		$-40^{\circ}C < T_A < +125^{\circ}C$	100			dB
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	$-40^{\circ}C < T_A < +125^{\circ}C$		0.2	5	μV/°C
Input Capacitance						
Common-Mode Input Capacitance				3		pF
Differential Input Capacitance				2		рF
Input Impedance				TBD		MΩ
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 10 \text{ k}\Omega \text{ to GND}$	4.95	4.97		V
		$R_L = 2 k\Omega$ to GND	4.90	4.95		V
Output Voltage Low	Vol	$R_L = 10 \ k\Omega \ to \ V_S$		5	10	mV
		$R_L = 2 \ k\Omega \ to \ V_S$		25	30	mV
Short Circuit Limit	lsc			±50		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_s = 2.7 V$ to 5.5 V	100	110		dB
		-40°C to +125°C	100			dB
Supply Current/Amplifier	Isy	$V_0 = V_s / 2$		1.5	1.6	mA
		$-40^{\circ}C < T_A < +125^{\circ}C$			1.9	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR			5.2		V/µs
Gain Bandwidth Product	GBP			8.7		MHz
Phase Margin	Фм			54		Degrees
NOISE PERFORMANCE						
Total Harmonic Distortion + Noise	THD+N	$V_{s} = 5 V, G = +1,$		0.002		%
		f = 20Hz to $20kHz$				
Peak-to-Peak Noise	en p-p	f = 0.1 to 10 Hz		1.1		μV р-р
Voltage Noise Density	en	f = 1 kHz		15		nV/√Hz
Current Noise Density	İn	f = 1 kHz		0.5		fA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 3.

10010 5.	
Parameter	Rating
Supply Voltage	6 V
Input Voltage	-V _s - 0.3V, +V _s +0.3V
Differential Input Voltage ¹	-V _s - 0.6V, +V _s +0.6V
Output Short-Circuit Duration to Gnd	Indefinite
Storage Temperature Range RM, CP Packages	–65°C to +150°C
Operating Temperature Range	–40°C to +125°C
Junction Temperature Range RM, CP Packages	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

 1 Differential input voltage is limited to 5.6 V or the supply voltage+0.6V, whichever is less.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θյΑ	οıc	Unit
8-Lead MSOP (RM-8)	TBD	TBD	°C/W
8-Lead LFCSP (CP-8)	TBD	TBD	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR10617-0-2/12(PrA)

www.analog.com

Rev. PrA | Page 4 of 4